Select your location:

Country

Fast transportation, clean air: HEPA filters for your pneumatic tube system


Uwe Hogartz
05 September 2024
Hospital
Reading Time: 4 min.
A hygienic environment, including air quality, is a key factor in hospitals to ensure patient safety. Especially in clinical areas, small and invisible particles can pose a risk. HEPA air filtration in your pneumatic tube system reduces the risk of dangerous particles being transported from one room to another.

What is a HEPA filter?

Bacteria, viruses, pollen or dust particles are transported and transmitted through the air. This results in an obvious problem for the pneumatic tube system: hazardous particles, such as germs, can spread to the whole hospital via the airflows of the tube system. The German ministry of health has published worrying figures: in Germany, between 400,000 and 600,000 people get sick with hospital infections, up to 20,000 even die from it. HEPA filters (High-Efficiency Particulate Air filters) cannot resolve this problem entirely, but at least narrow it down by filtering dangerous particles from the airflow.

Different HEPA filter classes remove more than 99.95 % of particles in your pneumatic tube system

Be aware that HEPA is not a protected product or brand name. Only products that correspond to the EU standard EN 1822-1:2009 meet the criteria necessary for classification. The efficiency (99.95 % for H13 and 99.995 % for H14) is determined as follows: MPPS (Most Penetrating Particle Size) are particles with a size between 0.1 and 0.3 μm. They are the most difficult to be filtered from the air. During measurements, the separation size of particles of exactly this size is measured and the efficiency is determined accordingly. At the same time, smaller and bigger particles are also filtered – even more efficiently – but those numbers are insignificant for the efficiency level.

Effective air cleaning of your pneumatic tube system

Ideally, HEPA filters should be implemented at several points in the pneumatic tube system. This way, less viruses, bacteria and other hazardous air components can’t reach different rooms via the air in tubes. Since the Covid crisis, the topic has been discussed heatedly in the healthcare sector.

The shared contact surface, the carrier, poses a risk for contamination between sender and carrier. In addition, the air containing germs could be spread even further via the pneumatic tube system. HEPA filters reduce this risk by filtering the air before it enters the system and after it escapes at the final station.

Different mechanisms filter and clean the air

Particles of different sizes pass through the air. Therefore, different mechanisms are applied to filter them, depending on their features.

In general, a HEPA filter consists of fibers that are arranged arbitrarily, creating a “net”. Big particles immediately get caught; they are too big to fit through the gaps. This is possible for HEPA filters, though not the primary intended use. They focus on smaller particles instead, applying three different processes to assure no harmful substances can pass through the filter and be spread.

Some particles are subject to inertia

The particles that can be filtered with this method are small enough to fit through the fiber gaps, but big enough to be governed by inertia. Even when airflow changes, those particles will continue moving in the same direction as before. At some point, they will collide with one of the fibers and get stuck.

Other particles are intercepted

Smaller and lighter particles adapt to the airflow around the fibers. If they are pushed to the edge of the flow, they might touch a fiber and equally get stuck.

The smallest particles diffuse

Particles with a diameter of less than 0.1 μm are light enough to move freely through the air. When they collide with other molecules, they are pushed in a different direction and, by chance, get stuck on the HEPA filters fibers (diffusion).

HEPA filter

HEPA filter vs. preliminary filter

A HEPA filter is not intended to filter all particles from the air, but only the most critical sizes. To minimize wear and tear and to protect the filter, preliminary filters should be implemented. Those directly stop coarse pollution. In the beginning, higher costs of investment deter, as two different filters have to be purchased. But in the long term, it will pay off and save costs. The investment of the dual model will be amortized when changing the preliminary filter for the first time – the far more expensive HEPA filter can still be used.

HEPA filters for your TranspoNet system

HEPA filters in a TranspoNet pneumatic tube system remove harmful particles from the transporting air and therefore reduce contamination.

They don’t provide complete protection but are highly useful with an efficiency of 99.95 % and more. Our HEPA filters are produced by a leader in air filtration and are labeled with a certificate. They have been designed for use in a pneumatic tube system.

Install your HEPA filter correctly for best results

Parameters such as volume flow, (differential) pressure, direction etc. are important for the installation of a HEPA filter in hospitals. The slightest deviations can negatively affect efficiency. Also, important flows need to be considered before installation. Air should not pass through filter elements from two directions. Ideally, there should be a HEPA filter at every air inlet and outlet opening.

Conclusion: HEPA filters in pneumatic tube systems for a healthier working and treatment environment

HEPA filters improve air quality and provide a clean environment. In hospitals confronted with dangerous particles such as viruses or bacteria, they can considerably reduce the risk for contamination. HEPA filters are a useful addition to pneumatic tube systems with large air flows. To create a save environment for patients and staff in hospitals.

About the author

Uwe Hogartz, Product Manager, TranspoNet pneumatic tube system.


More about Uwe Hogartz
Search more tags
Employee ExperienceModernizationTransport AutomationHospital PlanningClosed Loop Medication ManagementHRDigitizationPharmacists InsightsPoint of CarePneumatic Tube SystemUnit DoseHospital PharmacyPurple JourneyPatient SafetyPurple CultureServiceInterviewPharmacy AutomationInnovationsFuture PharmaciesOpen PharmacyNew WorkApplication TipsIntralogistics